RAPID: A Free, Portable GUI Design Tool

Martin C. Carlisle
Department of Computer Science
2354 Fairchild Dr., Suite 6K41
US Air Force Academy, CO 80840-6234
(719) 333-3590

mcc@cs.usafa.af.mil

1. ABSTRACT

In this paper, we describe RAPID, the Rapid
Ada Portable Interface Designer. RAPID isa
graphical GUI design tool that allowsthe user
to visually lay out a user interface, and have
the Ada codethat createsthisinterface
generated automatically. The generated code
will run on any platform supported by Tcl/Tk.

1.1 Keywords
Graphical user interfaces, automatic code generation,
Tcl/Tk, Ada

2. INTRODUCTION

More and more, computer programs are bewming
increasingly visual. Unfortunately, graphical interface
programming tends to be bath highly complicated and
system dependent. Various languages and graphical user
interface (GUI) design tods have been developed to
smplify this process RAPID (the Rapid Ada Portable
Interface Designer) is the first free multi-platform, GUI
design tod written entirely in and for Ada. By using the
RAPID todset, the programmer can quickly lay out a user
interface through a visual design process then have the
todset automatically generate Ada code that will create
that interface

Since multi-platform graphical languages aready exist, we
dedded to leverage off what had already been done, rather
than implementing a new set of graphical primitives from
scratch on several platforms. The two most promising
choices were Java [6] and Tcl/Tk [7]. Java has garked an

enormous amount of interest bath at universities and in

Patrick Maes
Department of Computer Science
2354 Fairchild Dr., Suite 6K41
US Air Force Academy, CO 80840-6234
(719) 333-3590

MaesPJ.DFCS@usafa.af.mil

industry. The exeautables created by a Java compiler can
be run (interpreted) on many different platforms. Java dso
provides ggnificant graphical primitives. For these
reasons, many have predicted Java will becmme the
preeminent programming language. In response, the Ada
community has targetted compilers to the Java Virtua
Machine [2,4]. These cmpil ers all ow the programmer to
utili ze the functionality of the VM while still retaining
the advantages of programming in Ada. Tcl/Tk is
avail able for freeon a wide variety of platforms, provides
native “look and fed” GUI tods, and is a more mature and
stable technology. Since Tdl is a scripting language, it is
much easier to test Tcl programs than programs written in
a compiled language such as Jva. Addtionaly, the
existence of TASH [10], a straight-forward Ada binding to
Tc/Tk, makes it an attractive aternative for Ada
programmers. The ese of using Tcl/Tk and TASH led us
to choose them asthe target for our GUI design tod.

In addition to seleding an existing graphical language, we
aso barowed ideas from compilers that enabled us to
develop the tod much more quickly, and also to make it
much easier to switch the type of code that is output.
Sedion 3 will discuss the todset, and the features it
provides. In Sedion 4, we describe the development of a
simple application using RAPID. Sedion 5 describes our
use of an intermediate language and bodstrapping.
Boatstrapping allowed us to generate over 40% of the
RAPID code using RAPID itself. A description of how to
add new widgets to RAPID is given in Sedion 6. Finaly,
in Sedion 7, we will contrast RAPID with similar work,
and provide ideas for further development.

3. THE RAPID TOOLSET

The RAPID todset consists of 3 programs. RAPID,
TASH_FROM_GIF, and CALLED_FROM_TCL. RAPID
is the main GUI Designer, which al ows the programmer
to visually lay out a graphical user interface and have the
Ada code for that interface generated automatically.
TASH_FROM_GIF allows the programmer to embed GIF
images in the mde without requiring any external files.
CALLED FROM_TCL is used to generate mde that will
adlow an Ada procedure to be used as a callback on a
generated event.

Many widgets have actions associated with them. For
example, the programmer may want a certain procedure to
be alled if a button is presed. Since the button is
implemented using Tcl/ Tk primitives, this requires the use
of a callback procedure. Registering the allback with Tcl
is done automatically for certain events (such as a button
push); however, the programmer may wish to add
additional event handlers (e.g. a procedure to be clled
whenever the mouse enters the window). The syntax for
these event handlers is reatively awkward, requiring the
use of the package Interfaces.C and the Convention
pragma. Additionally, all datain Tcl/Tk is gored as a text
string. On the allback, this data would need to be
converted from a C-style string to the appropriate Ada
type. CALLED _FROM_TCL simplifies the programmer’s
task by automatically generating the appropriate ade to
register the allback and do the necessary conversions.
Given an input file wnsisting of Tcl name, Ada command,
and argument count triplets, CALLED _FROM_TCL will
create an Ada package mnsisting of functions to serve as
intermediaries for the allback, and an exported procedure
Generate Bindings, that, when called, will register these
intermediaries.

RAPID - Untitled

Figure 1: The main RAPID window.

Figure 1 shows the main window for RAPID. The first
row of buttons allows the user to create a new window,
open a previous window, save the arrent window, start
the menu editor, or compile the GUI to Ada code. The
second row of buttons is used to seled what type of widget
will be added (currently only text labels, text buttons,
picture buttons, text-entry widgets, radio buttons and chedk
boxes are supported, though more are being added.
Sedion 6 describes how you can add your own widgets).
After seleding “new” or opening a file, the user can use
the left mouse button to click and drag out a new widget
(as srown in Figure 1).

When the user releases the left mouse button, a dialog box
appears that asks the user to fill in the properties of the
new widget. Figure 2 shows an example properties dialog
box for atext button. Oncethis has been fill ed in, the user
can recll this dialog and change the properties of the
widget by clicking on it with the right mouse button. In
the dialog shown, the location and size of the text button
have been automatically filled in, based on the redangle
that was drawn by the user. For this particular widget, the
user must spedfy its name, the text that will appear on the
button, and its action (which Ada procedure will be alled
when the button is pushed). The action should be a fully
qualified Ada procedure name (ed.
Edit_Menu.Cut_Choice).

bestbutton_dialog

Figure 2: The properties dialog for a text button

For a picture button, the “Text” field would be replaced by
a“Picture’ field, which would be the name of the GIF file
containing the image. A text label widget has the same
fields except there is no action. The text entry widget has
an action (for when the user presses enter), but no text.

Using the menu editor button from the main todbar, the
user can start the RAPID menu editor. This visua
interface is modeled after a Windows-based file browser.

Indentation indicates nested items. From this window, the
user can insert or delete menu items. An inserted menu
item will immediately follow the sdeded item. Since
menus can be nested, this creates some ambiguity. If a
submenu is highlighted, should the insertion occur at the
same level, or oneleve degoer? To resolve this ambiguity,
each submenu has a symbd to its left indicating whether
or not an insertion will ocaur one level deegper (“>"), or at
the same level (“["). In Figure 3, if the user seleds “Insert
Choice’ with “Fil€" sdeded, the item will be placed on
the same levd, just before “Edit”. Were “Edit”
highlighted, the insertion would occur as an item in the
“Edit” menu, just before “Cut”. The user can toggle which
type of insertion will ocaur by clicking on the symbd.

edit_dizplay_main_menu

Figure 3: The RAPID menu editor

When the user opts to insert a menu or choice a dialog
(smilar to the one in Figure 4) will pop up asking the
user to spedfy the text of the menu choice which
character is the shortcut (this character will be underlined
when the menu is displayed), if there is a keyboard
shortcut (such as Ctrl+X), and what Ada procedure should
be @lled when thisitem is sleded. When the user closes
the menu editor, the menu will be updated and
redisplayed.

menuitern_dialog

Figure 4: Inserting a menu choice

The RAPID GUI designer alows users to generate a
simple graphical user interface without any knowledge of
Tcl/Tk programming. Once they are pleased with their
design, pushing the compil e button will generate all of the
necessary Ada code (using Tcl/Tk via the TASH binding)
to display the interface and handle al of the events.

4. BUILDING A GUI WITH RAPID

In this edion, we describe the development of a sample
application using the RAPID todset. The example we
chose was a sorting demonstration that would sort data (in-
order, reverse, or random) with various orting techniques
and report the dapsed time of the sort. To demonstrate all
of the avail able widgets, some redundancy was deli berately
added to the design.

The parameters for the sort include the type of sort,
original order of data, and order of the result. The type of
sort was most readily represented by a radio button, and
the order of result by a chedk box. To demonstrate the
menu, we also alowed sdedion of bath the type of sort
and order from the menu. Starting the sort may be done
by using a text button, picture button, or from the menu.
The user can terminate the application using either a text
button or menu choice Figure 5 shows the main RAPID
window at the mwmpletion of the design process

(=] E3

RAPID - main.gui

File Edit Toolz Help

Dl=|d| = &
= I s ol

Program Bubble Shell Quick Inzertion

] n n
= Sort Timing Program =
] n n

Type of Sort
¢ Bubhble Sort
" Shell Sort
" Quick Sort

= |nsertion Sort

[Sort Descending

L Goll Quit

Figure 5: Sort demo main window

Neither the radio huttons nor the dedkbax has an action

asciated with it. Instead, the values of these widgets are

read when the user sdeds “Go!!”. For example, to read

the value of “Sort Descending”, the following line of code

isused:

Checked := Tcl_Utilities.Is_Checked (
Main.Interp, "descending");

Since the radio huttons are grouped, the autogenerated
code is more wmplicated. When laying out the radio
buttons, the programmer spedfies a group for each. In the
widgets package for the main window, for each group, an
enumerated type is automatically created and the
procedure Read_Group can then be used to read which
choice was sleded. Since Ada is grongly typed, this
procedure @n be overloaded for each group of radio
buttons. Following is the line of code used to determine
which type of sort was sleded (since the variable
Which_Sort isdedared to be of the appropriate type, the
corred Read_Group function is chosen) :

Which_Sort :=
Main.l nterp);

Main_Widgets. Read_Group (

The menus dugicate functionality already present in the
buttons. Seleding a menu choice should then update the
radio huttons and ched box as appropriate. The utiliti es
package also provides routines for acocomplishing this. A
sample from the application is given below:

Tcl_Utilities.Deselect_Box(Main.Interp,
"" , "descending");

For each of the buttons, a fully-qualified Ada procedure
nameis pedfied. This procedureisthe action that will be
performed when that button is pushed. The procedure
should be parameterless Currently, RAPID will only
generate a with clause based on the procedure name, and
not examine any arguments. This is not a limitation, as
any state neaded could be kept in package variables. Also,
in this case, the procedure obtains the information it needs
by querying the widgets.

RAPID - data_type.gui
File Edit Toolz Help

D= = ke
5 [a2

- 10] x|

T FIE
N0 MEnLs
Type of Data ko Sort
I Order Iterns to Sort [2-100]
' Reverse Order l
" Random
L} | |
L] Sort ‘Emll F
| |]

Figure 6: Sort demo data type window

After the user starts the sort, a new dialog appears to ask
for information about the data to be sorted. Both the type
of data to be sorted and the number of items to sort are
entered from this sreen.

Figure 6 shows this window. Again aradio button group
is used to seled the type of datato be sorted. A text-entry
widget is used to enter the number of itemsto sort. Text-
entry boxes are also all owed to perform an action when the
user preses <Enter>. In this case, we cthose to have this
action be the same as if they presed the “Sort ‘Em!!”
button.

Once the user sdleds “Sort ‘Em!!”, the application will
determine what was sleded and then perform the
operation. As before, the radio hutton group has an
automatically generated procedure to read which was
sdeded. For the text-entry box, the utility package
provides a routine for reading the value. An excerpt from
the sort procedureis given below:

Which_Data := Data_Widgets.Read_Group (
Main.Interp);
Tcl_Uti lities.Get_Text_Entry(
Main.Interp,
".data" , "count"
Data_Count);
Tcl_Utilities.Destroy_Window(
Main.Interp, ".data");

The menu and screen system described were put together
in one and one-half hours, as well aswriting a shell of the
package @ntaining the action procedures. The main
procedure requires only three lines of code, and is given
below. After generating the window, a default value is
given to the radio button group.

with Tcl;
with Tcl.Tk;
with Main;

with Main_Widgets;

procedure
begin
Main.Generate_Window(Main.Interp);
Main_Widgets.Set_Button (
Main.Interp, Main_Widgets.Bubble);
Tcl. Tk.Tk_Mainloop;
end Sort_Demo;

Sort_ Demo is

The action package ntains the procedures described
abowe, and also uses procedures from the provided
common dialogs library. The cmmon dialogs library
provides procedures for creating an OK box, a Yes/No
dialog, a file open or save dialog, and a Quit dialog. The
sort demo uses the OK box to display its results and the
Quit dialog to ask if users are sure they want to quit when
quit is chosen from the menu.

Overdl, the total time spent on developing the GUI
portion of the appli cation was approximately threehours.

5. RAPID DESIGN PROCESS

A GUI design tod is a sufficiently complex program that
we would like some asgstancewriting it. In particular, the
tod itsedf has a graphical user interface that could be
designed using a similar tod. Just as Pascal was first
implemented by writing a compiler in Pascal [11], we
dedded to use RAPID to develop itself. This “chicken-
and-egg’ processis referred to as bodstrapping [1]. The
first step of this process was to develop an intermediate
language for a graphical user interface and the ability to
compil e this interfaceto Ada code. Sincethe intermediate
format chosen was a smple text file (unlike most
compilers), we were able to write a portion of the GUI
using the intermediate language and then compile it.
After doing that, we were able to repeatedly use the tod to
generate improved versions of itsdf. Following is a
portion of the grammar used by RAPID:

<window> :=WINDOW <name> <width>
<height> <menubar> <widgets>
ENDOF WINDOW

<menubar> = MENUBAR <menulist> ENDOF
MENUBAR | A

<menuli st> ;.= MENU <submenuinfo> <menuli st>

ENDOF MENU | ITEM <iteminfo>
<menulist> | A

::=<name> <underline>
<posshle_action>

<submenuinfo>

<posgble action> ::=<action> | A

<iteminfo> ::=<name> <underline> <action>
<accderator>

<accderator> i=<accd_key> | A

<widgets> :=WIDGETS <widgetli st> ENDOF
WIDGETS | A

<widgetli st> = <widget> <widgetlist> | A

<widget> ::= <picturebutton>|<textbutton>|...

<picturebutton> ::= PICTUREBUTTON <name> <x>

<y> <width> <height> <action>
<picture>

<textbutton> = TEXTBUTTON <name> <x> <y>

<width> <height> <action> <text>

Using the above grammar, we wrote the interface for the
main RAPID window diredly in the intermediate
language. Below is a portion of the RAPID main window
interface These 27 lines of the intermediate language
compil ed to 506 lines of Ada code. Note that whenever we
provide a line @unt, it refers to anly non-blank, non-
comment lines of code.

WINDOW "." 300 58

MENUBAR

MENU "File' 0

ITEM "New" 0 "File_Menu.New_Choicée' Ctrl+N
ITEM "Open" 0 "File_ Menu.Open_Choice' Ctrl+O
ITEM "Close' 0 "File_Menu.Close_Choice' Ctrl+F4
ITEM "Save' 0 "File_ Menu.Save Choicé' Ctrl+S
ITEM "Save As' 5 "File Menu.SaveAs Choicé'
ITEM "Exit" 1 "File Menu.Exit_Choice"'

ENDOF MENU

MENU "Tods' 0

ITEM "Compil€' 0"Tods Menu.Compile_Choice'
ENDOF MENU

ENDOF MENUBAR

WIDGETS

PICTUREBUTTON newButton 0 0 23 23
"File_Menu.New_Choicée' "new_gif"

PICTUREBUTTON openButton 23 0 23 23
"File_Menu.Open_Choice' "open_gif"
PICTUREBUTTON saveButton 46 0 23 23

"File_ Menu.Save Choicé' "save gif"
PICTUREBUTTON compil eButton 112 0 23 23
"Tods Menu.Compile_Choice' "compile_gif"
PICTUREBUTTON labelButton 0 25 23 23
"Todbar.Seled_Widget(Todbar.LABEL)" "label_gif"

PICTUREBUTTON textBButton 23 25 23 23
"Todbar.Seled_Widget(Todbar. TEXTBUTTON)"
"text_button_gif"

PICTUREBUTTON pictureBButton 46 25 23 23
"Todbar.Sdled_Widget(Todbar. ICTUREBUTTON)"
"picture_button_gif"

PICTUREBUTTON textEntryButton 69 25 23 23
"Todbar.Sdled_Widget(Todbar. TEXTENTRY)"
"text_entry_gif"

PICTUREBUTTON menubutton 79 0 23 23
"Subwindow_Actions.Edit_Menu" "menu_gif"

ENDOF WIDGETS
ENDOF WINDOW

The @de length was also reduced using objed-oriented
techniques. Each widget is part of a GUI widget
hierarchy. The methods for each widget include: reading
its intermediate form from a file, writing its intermediate
foom to a file, generating the mde for the widget,
displaying the widget, and running a properties dialog for
the widget. Since different widgets sare properties (e.g.
al widgets have a location and size), a particular widget
method can call the same method in its parent class to
perform common functions. For example, the intermediate
form of every widget contains its name followed by its
location. Reading this portion of the widget’s information
in from the file is done in the method for the widget (top-
level) class Each subclass overrides this method and,
within the method for the subclass call s the method of its
parent class

The design of CALLED_FROM_TCL aso reduces the
amount of handwritten code. As described in the previous
sedion, CALLED_FROM_TCL generates an intermediate
function for each callback. Each intermediate function
consists only of a call to the Ada command along with the
appropriate number of arguments. The arguments are
obtained using call s to the overloaded function Argument.
Each Argument function takes in the argument list and the
number and returns that argument, converted to the
appropriate Ada type. By this use of intermediate
functions and overloading, the ade for the binding is
independent of the types of arguments. This means that
CALLED FROM_TCL does not need to do any
complicated parsing of spedfication files, since the
compiler will do the work of determining which Argument
function should be @lled for each parameter. As aresult,
the CALLED_FROM_TCL tod required only 101lines of
Ada code for its implementation. In generating the
RAPID GUI Designer, CALLED_FROM_TCL converted a
6 line spedfication file into 1401ines of Ada code.

Finaly, TASH_FROM_GIF smplifies incorporating
pictures into the graphical user interface Starting with a
GIF file, this program first converts the GIF file to base 64
format. Given a base 64 encoding of the image,
TASH_FROM_GIF will creste an Ada package with a
single procedure Generate Image, which loads the image
into the Tcl interpreter. Each 23x23 pxd image for a
RAPID button yielded approximately 38 lines of Ada code.
TASH_FROM_GIF may be used separately if neeled, but
isautomatically called by RAPID for picture buttons.

In combination, these tods automatically generated over
2000 of the more than 5000 lines of code in the RAPID
todset (over 40%). By emphasizing reusability of code

and automatic code generation through bodstrapping, we
were able to develop the tod far faster than if we had used
traditi onal techniques.

6. ADDING WIDGETSTO RAPID

Beause the RAPID sourceis also distributed as freeware,
the user of RAPID aso has the opportunity to add
additional widgets to the tod or increase the functionality
of any current widget. As described in the previous
sedion, this process is smplified by usng RAPID to
extend itsdf. In this sdion, we describe the steps
necessary to add a new widget to RAPID. Since RAPID
uses the TASH binding to Tcl/TK, it is necessary to have
some understanding of Tcl/ Tk programming (see[5], eg.)

The first step is to add the new widget to the tod bar. To
accomplish this, we run RAPID and open tod.gui, the GUI
spedfication of RAPID's main window. We then
dugi cate an existing button, change its graphic and action,
and placeit on thetodbar. The action for this new button
should open a new dialog box alowing the user to spedfy
the attributes of the widget. This new dialog can be
designed by copying the dialog of a similar widget, and
modifying it using RAPID.

A new package must be added to the GUI widget class
heirarchy to support the operations on the new widget.
The use of objed orientation allows for a lot of code reuse,
and geatly smplifies this task. As an example, consider
the foll owing code for a chedk button:

procedure Read Widget(
Widget : inout Check_Button;
File . in Ada.Text_lo.File_Type) is
Word : Word_Type;
Last : Natural;
begin -- Read_Widget
Read_Widget(Gui_Widget(Widget),File);
File_Helpers.Get_String(File,
Word,Last);
Widget. Text:=
Word(1..Last));
end Read Widget;

new String'(

Since the dedk button shares most properties with all
widgets (location, name, etc.), we @n cal the parent
method, then add the additional value (text). In total,
GUI-Widget-Chedk_Button.adb required only 101 non-
blank, non-comment lines of code to implement the 8
methods asociated with a widget: Read (from a file),
Write (to a file), Generate Ada code, Display, Set
Properties (using the dialog box), Apply Properties (from
the dialog bax), Ched Properties (to ensure they are

valid), and Dialog Name (return the name of the dialog
box).

Any widget within the Tcl/Tk library can be aeated, no
matter how complicated. The programmer need only
generate Ada code mntaining the appropriate Tcl/Tk
script required to create the new widget. Probably the
most counter-intuitive part of the task is to kegp in mind
that the Generate method consists of Ada code that
produces Ada code. This Ada code must compil e without
intervention.

After adding the new widget, several other files must be
edited to handle the new widget. First, GUI_Enum.ads
contains an enumeration type to which the new widget
must be added. Widget_10.adb must be given visihility to
the new widget package by adding a “with” clause. Then,
the @se statement in the Read Widget procedure must be
modified to include the new widget. Also, to keep in line
with the phil osophy that the RAPID user should not need
to know Tcl/Tk, appropriate procedures ould be added to
the utility package to alow the user to manipulate the
widget. In the @ase of a more complicated widget, such as
the radio hutton, it may make sense to autogenerate these
procedures for each instanceor group of the widget.

7. CONCLUSIONSAND FUTURE WORK

In conclusion, RAPID allows Ada programmers to add a
GUI to their programsin a very smple and portable way.
The mde that is generated will run on any of the many
platforms that support Tc/Tk (including Windows,
Macintosh, and Unix machines). Also, the GUI design
tod uses a very intuitive visual process to create the
desired interface The portability of the resultant code sets
RAPID apart from similar products, such as SAGE-ST [8],
the Aonix GUI Builder [2] and the proposed CLAW
Application Builder [3] (CLAW dso clams to be
“portable,” but this portability refers to its use with
different compil ers, not on different platforms).

Since RAPID is freavare and will run on a variety of
computers, this makes it an attractive tod for use in an
educational setting. At a recet SIGCSE conference it
was pointed out that CS curricula should address human-
computer interface isues and visual programming [9].
RAPID provides a goad vehicle for exploring these isaues
with students, and also further demonstrates the utility of
Ada bath as a commercial-use language and a teaching

language.

Additionaly, the source for RAPID is available for
download via ftp from the Internet (see
ftp://ftp.usafa.af. mil/ pub/dfcg/carli e/ usaf alrapid/index.ht
ml). This provides an opportunity for others to contribute
to the product by adding additional widgets or additional
functionality to the eisting widgets. We also intend to
continue to improve the product based on our observations
from using it, and input from others. Since RAPID uses
the ohjed-oriented features of Ada 95in its design, adding
widgets is a straightforward process consisting of creating
a new type and overloading the appropriate methods. The
RAPID design process also greatly speeds expansion via
bodstrapping and code reuse.

8. ACKNOWLEDGMENTS

The authors wish to acknowledge Doug Michel and the
referees, whose insightful comments improved the final
form of this paper.

9. REFERENCES

[1] A. Aho, R Sethi, and J. Ullman. Compilers:
Principles, Techniques, and Tods, Addison-Wesey,
1986

[2] Aonix Inc. Objed Ada, 1997

[3] R. Brukardt and T. Moran. “CLAW, a High Levd,
Portable, Ada 95 Binding for Microsoft Windows,”
Tri-Ada’97, pp. 91-104, ACM, 1997

[4] C. Comar, G. Dismukes, and F. Gasperoni. “Targeting
GNAT to the Java Virtual Machine,” Tri-Ada’97, pp.
149161, ACM, 1997.

[5] E. Foster-Johnson. Graphical Applicationswith Tcl &
Tk, Second Edition, M& T Boodks, 1997

[6] J Goding, B. Joy, G. Stede. The JvalJ Languag
Sredfication, Addison-Wedey, 1996

[7] J. Ousterhout. Tcl and the Tk Todkit, Addison-
Wedley, 1994

[8] SAGE-ST. http://sageftp.ind.govisage/homepage.htm

[9] SIGCSE Town Meding, Atlanta GA, February 1998

[10] T. Westley, “TASH: A Free Platform-Independent

Graphical User Interface Development Todkit for
Ada,” Tri-Ada’96, pp. 165178 ACM, 1996

[11]N. Wirth, “The design of a Pasca compiler,”
Sdtware--Practice and Experience, vol. 1, no. 4, pp.
309333

